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Abstract

Short texts such as open-ended survey responses and tweets contain valuable information
about public opinions, but can consist of only a handful of words. This succinctness makes
them hard to summarize, especially when the texts are based on common words and have little
elaboration. This paper proposes a novel text scaling method to estimate low-dimensional word
representations in these contexts. Intuitively, the method reduces noise from rare words and
orients scaling output toward common words, so that we are able to find variation in common
word use when text responses are not very sophisticated. It does this using a particular im-
plementation of regularized canonical correlation analysis that connects word counts to word
co-occurrence vectors using a sequence of activation functions. Usefully, the implementation
identifies the common words on which its output is based and we can use these as keywords
to interpret the dimensions of the text summaries. It is also able to bring in information from
out-of-sample text data to better estimate the semantic locations of words in small data sets.
We apply the method to a large public opinion survey on the Affordable Care Act (ACA) in the
United States and evaluate whether the method produces compact, meaningful text dimensions.
Unlike comparison unsupervised techniques, the top dimensions produced by this method are
also the best predictors of issue attitudes, are well-distributed across respondents, and do not
need much information from higher dimensions to make good predictions. Substantively, over
time changes in the prevalence of the text dimensions help explain why efforts to repeal the
ACA in 2017 were fragmented and unsuccessful.

Open-ended survey responses help researchers avoid inserting their own expectations and biases

into their findings and allow for unexpected discoveries. Gleaning systematic information from
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unstructured open-ended responses, however, can be challenging. People write on their own terms
and many write incomplete sentences using only a small number of loosely connected keywords.
In the data we will use here, for example, the mean number of words in the responses is only 7 and
20% of the responses use 3 or fewer words not contained in a widely used stopword listEI

Bag-of-words approaches, including topic models (Blei, Ng and Jordan, [2003}; Ble1 and Laf-
fertyl, 2007; Roberts et al.,|2014) and scaling models (Deerwester et al.,|1990; Slapin and Proksch),
2008), can work whether or not there is much grammatical structure. But standard methods are
intended for analyses of general and sophisticated text corpora rather than short survey responses
on a single issue. Because of difficulties inherent to studying general corpora, especially difficul-
ties in accounting for common words that can span many topics (Wallach, Mimno and McCallum,
2009), they are designed in a way that does not take full advantage of information contained in
common words. This reduces the ability to represent open-ended survey text in a small number of
highly predictive and interpretable dimensions.

This paper proposes a method to better estimate the meaning of short and probably vague text
on a focused issue, such as open-ended survey responses on a public policy or tweets about a
protest movement. The method is similar to standard text scaling methods but reorients its output
away from rare words and toward meanings in common words. To do this, its implementation uses
a regularized canonical correlation analysis (CCA) between in-sample word co-occurrences and
out-of-sample word embeddings (e.g. the average meaning of a word across all text on Wikipedia
or Twitter) weighted to reflect in-sample word volumes. The implementation is closely related to
text scaling methods based on latent semantic analysis (Deerwester et al.,|1990), including methods
widely used in political science such as WordFish (Slapin and Proksch, 2008)) and correspondence
analysis (Lowe, 2007, 2016).

The method, which we call canonical pivot analysis, uses few to no researcher defined hyper-

parameters in order remove the researcher from the measurement processE]

! http://jmlr.csail.mit.edu/papers/volume5/lewisO4a/al 1 -smart-stop-list/english.stop (SMART)
2 The hyperparameters are used only to induce a specific ‘pivot” behavior that reorients output toward common
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The specific approach resembles pivots used in domain adaptation (Blitzer, Foster and Kakade,
2011). These methods adapt general machine learning models to a different or more focused task.
Typically, pivots are common words that do not have different meanings or functions across the
two contexts, and they are the axes on which adaptation from one context to another is based.

We use common words in our text scaling method more or less how they are used in domain
adaptation. We use them to adapt our scaling from rare words toward common words and to bring
in information from out-of-sample data. Mechanically, our pivots are common words for which we
are able to identify shared or symmetric representations across two contexts — in-sample word co-
occurrences and out-of-sample word embeddings heavily weighted by our in-sample word counts.
We find these symmetric representations when words exceed a soft threshold of frequency and
specificity.

More intuitively, these pivots are moderately common to very common words that tend to
appear with a certain set of words. That is, they are common and somewhat specific. Many people
say these words and, when they say them, we can make a reasonable guess about what else they
could have said — but often didn’t say in only 7 words. Existing text scaling methods also implicitly
optimize some form of this predictionE] Unlike existing methods, however, we have a relatively
low bar for our guess, especially if a word is very common. Instead, we focus on getting a machine
to identify the gist of a response that states, for example, only ‘how are we going to pay for it’
(emphasis added), associate common words that fall along a similar line of argument, and then
order these word associations according to how common and coherent they are in the text. In
focusing on the gist of a response, the pivot words are the axes on which we orient the output away
from rare words and toward common words. [

Beyond the improved performance on short text, the method provides a few nice additions

words. We suggest reasonable ranges for these parameters. In our experience, changing the values of the hyperparam-
eters at reasonable levels has very little effect on the lowest dimensions of the results.

3See, for example, Levy and Goldberg (2014).

4 Another way to think of this is that we stretch distances for common words.



to standard text scaling that improve interpretation and stability. In particular, it provides a key-
word metric (that is also the basis of the optimization) and a means of incorporating outside data.
Keywords are very helpful for interpreting text summaries on multiple dimensions, but are not pro-
vided in the output of standard text scaling methods (they are important in topic models instead).
Out-of-sample data, meanwhile, can help text scaling methods work better on small data sets.

We apply pivot analysis to a survey on attitudes toward the Affordable Care Act (ACA), and
contrast the results with output from topic models and from text scaling techniques that also do
not enforce categories on outputs. We find that pivot analysis is as good as standard factorizations
at predicting issues attitudes in high dimensions and, critically for small social surveys, that it is
much better at predicting responses in few dimensions.

Comparisons on additional survey responses show that the representations’ top dimensions
reflect cleavages between and within U.S. political parties. The different dimensions help provide
explanations for changes in attitudes toward the ACA and relationships between dimensions of
ACA attitudes and presidential candidate vote choices. The specific changes and the time frames

over which they occurred provide clues to explain why repealing the ACA in 2017 was so difficult.

Uses for the Method

The method in this paper is designed to analyze short text data on a focused and potentially po-
larized topic. It is well-suited to many open-ended survey responses and to opinion statements on
social media.

In particular, the method is tailor-made for open-ended survey responses on a specific issue,
such as attitudes on abortion or immigration policy. The method will ‘summarize’ these texts even
though they are very short and contain much less information than a document like a news article,
press release, or speech.

It is also applicable to tweets and text from social media on a focused topic, such as tweets



containing a specific hashtag accompanied by a personal political statement. Well-known examples
of these kinds of texts are tweets containing the text “#BlackLivesMatter” and “#YesAllWomen”ﬂ

These texts are both public opinion statements and influential parts of political movements.

Specific Application and Motivation

Our specific motivation in developing this method is to summarize information contained in open-
ended responses on attitudes toward the Affordable Care Act. This is part of a larger project on
public and politician attitudes toward the law. The project will incorporate text responses to explain
how people think about the ACA and how they justify their support or opposition to it.

Broadly, the effort aims to better understand dimensions of partisanship, the stability of atti-
tudes toward the ACA over time, and why efforts to repeal and replace the ACA in 2017 were so
fragmented, even though Republicans were unified in their dislike for the law. The text summaries
will supplement analyses based on closed-ended surveys. Although we have a large amount of
closed-ended data, we are limited in the number of questions we can ask, we do not always know
what to ask ahead of time, and it is possible that our questions will create opinions on the ACA
that respondents did not hold before we asked themEI

These summaries should be able to score even very short or seemingly vague responses, since
respondents on political science surveys often hold strong attitudes without sophisticated or policy-
based justifications for them.

Also, given our interest in both policy perceptions and within party conflict, these summaries

3 The “#BlackLivesMatter” rose to prominence on Twitter after black teenager Michael Brown was killed by police
in Ferguson, MO in August 2014. See more info here: https://www.nytimes.com/2016/08/23/us/how-blacklivesmatter-
came-to-define-a-movement.html. The “#YesAllWomen” hashtag emerged after six people were killed near the
campus of UC Santa Barbara in May 2014 by a man who blamed “the cruelness of women” for the attacks. See
more info here: http://www.cnn.com/2014/05/27/living/california-killer-hashtag-yesallwomen/index.html. And here:
http://time.com/114043/yesallwomen-hashtag-santa-barbara-shooting/.

6 For example, our question wordings could make certain aspects of the ACA more salient than others, and do this
in an unrealistic way. Our emphasis could then lead respondents to create opinions simply in response to our question
(Zaller and Feldman, |1992)).



should be able to discover multiple dimensions of attitudes and do this without supervision (i.e.
without telling the method whether a person likes or dislikes the ACA or is a Republican or Demo-
crat). Since ACA attitudes are correlated with partisanship at 0.65 in our data, supervised methods
that project words onto a single dimension will recover that variable, whether or not the words tell
us much about policy attitudes.

These motivations help decide what technique we use to analyze the data. Currently, there are
two broad approaches to summarizing text data without supervision: topic modeling and scaling
methods. Topic models, such latent Dirichlet allocation (Blei, Ng and Jordan, 2003), correlated
topic models (Ble1 and Lafferty, |2007) and stuctural topic models (Roberts et al., 2014)), are a
form of source separation and split documents and sets of vocabulary onto distinct categories. This
source separation works well on long and/or diverse corpora and it typically requires the researcher
to specify the number of categories in the data a priori.

Scaling methods, on the other hand, compress variance in text usage onto a small number
of continuous and potentially polarized variables (i.e. positive and negative variables). They work
well on focused text corpora with sophisticated speakers. In political science, text scaling methods,
including WordFish (Slapin and Proksch, 2008)) and WordScores (Laver, Benoit and Garry, 2003;
Lowel 2007)), are used as “ideal point” methods, with estimates similar to those from Poole and
Rosenthal’s NOMINATE on roll call votes (Poole and Rosenthal, 1985)@ Scaling methods often
do not require the user to specify the number of dimensions of the output, and the dimensions of
the output have a natural ordering that is the amount of variance in the source data that an output
dimension explains.

In analyzing our data on attitudes toward the ACA, we prefer a text scaling method over a
topic model. All of our survey responses are about the same issue (i.e. the same topic), and

so are hard to separate into distinct categories. Further, political conflict in the United States

7 All of these text methods are well known (Lowe, [2016)) to be closely related to latent semantic analysis, which
uses singular value decomposition on a standardized term-document matrix.



is polarized and extremely low-dimensional, so a text scaling method that describes a polarized
and low-dimensional semantic space will often be more useful than distinct but high dimensional

topics.

Data and Challenges

We have a very large number of open-ended survey responses on the Affordable Care Act that
we can use to study public attitudes on the law. Over 9,000 open-ended responses on the ACA
were collected by the Kaiser Family Foundation and Pew Research Center between 2009 and
2016. These two data sets are publicly available and have been analyzed in prior work (Hopkins,
2017). We add to this data approximately 3,000 responses in 2016 from our own survey of political
activists, people who are members of a political party and have high levels of political participation,
along with 1,000 responses in 2016 from a national representative sample.

In the data, 11,000 or so respondents were asked two questions at the beginning of a longer
survey on health care policy attitudes. The first two questions were: 1) “As you may know, a health
reform bill was signed into law in 2010. Given what you know about the health reform law, do you
have a generally favorable or generally unfavorable opinion of it?” 2) “Could you tell me in your
own words what is the main reason you have a favorable/unfavorable opinion of the health reform
law?”. Around 2,000 thousand respondents were asked two similar questions before the ACA was
signed into lawﬂ

Although we had many responses, each response on its own appeared to contain very little
information. The mean number of words in these responses was only 7 (median 6) and 20% of
the responses used 3 or fewer words. Many respondents used the same words, for example: health

(4,594), people (4,002), insurance (3,635), think (2,024), will (1,397), and government (1,305).

8 Closed-ended: “As of right now, do you generally favor or generally oppose the health care proposals being
discussed in Congress?”. Open-ended: “What would you say is the main reason you favor or oppose the health care
proposals being discussed in Congress.”



Around 9 out of 13 thousand respondents used at least one of these words, and 4,500 people used
only the top 100 words in the corpus plus one other word.

However, these common words were unevenly distributed across respondent types. For ex-
ample, Republicans were significantly more likely to use the word “government” to justify their
attitudes toward the ACA.

Ideally, we would have used an existing method to analyze variation in these ACA responses.
We discovered, however, that scaling methods struggled to estimate the locations of common
words. The existing scaling methods standardized word frequencies before estimation and this
equalization effectively upweighted sophisticated words at the expense of common WOI’dSEI In
practice, this scored common words close to each other and spread them across many dimensions
of the outputm Since most respondents only used common words, this limited our ability to use
most of the responses in low dimensional and interpretable models, even as we observed clear
partisan variation in common word use.

Due to this difficulty, we designed a method that was similar to standard text scaling, but
performed well on short, keyword based responses on a focused and polarized topic. Because so
many respondents used a small number of common words, we considered the possibility that these
words were particularly important, and that they would provide clues to the overall structure of
opinions. We tested this by orienting the overall word representations toward the most common
words, so that common words were not erroneously scored close together and so that more precise
terms mostly strengthened signals or disambiguated the common words.

We also added out-of-sample word embeddings to better estimate the moderately common
words’ representations. Moderately common words affect the document scores for many respon-

dents but have substantially sparser in-sample co-occurrences than the most common words. This

9 As well as, in some cases, words that regularly appeared as the only word in a sentence. This was a major
problem with correspondence analysis compared to PCA on the standardized word co-occurrence matrix. The chi-
squared distribution was a poor null model for the distribution of words.

10 This is a generally accepted problem in text scaling methods and topic models.



adjustment helps our method perform well on even small numbers of open-ended survey responses.

Method

Our proposed method for scaling open ended survey responses is based on a decomposition of
a particular covariance matrix. The decomposition it leverages, canonical correlation analysis
(CCA), is fundamentally a linear regression with multiple dependent variables.

In a typical use case, a CCA on text works very much like standard text scaling such as latent
semantic analysis (LSA) (Deerwester et al., [1990) on a term-document matrix, a singular value
decomposition of a standardized co-occurrence matrix (Bond and Messing, 2015)), or correspon-
dence analysis (Lowe, 2016) The primary difference between the CCA and these other methods
is that a few adjustments to CCA and our input data will allow us to simultaneously 1) re-orient the
factorization around common words; 2) add information from out-of-sample word embeddings;
and 3) estimate keywords for each dimension.

Broadly, the ‘pivoting’ in this method is a way of weighting our scaling output toward common
words without creating dimensions in our output that encode word frequencies and without weight-
ing the output toward common words that are overly general. In practice, the output is similar to a
tf-1df standardization, which assumes that very common words are not specific, but does not insert
that functional form ex ante. Instead, the method relies on the structure of text data, especially
an inverse relationship between word frequencies and the specificity of words’ conditional word
co-occurrence probabilities, to create the standardization. We call the behavior pivoting both be-
cause of a mechanical resemblance to pivots in other natural language processing methods and also
because we pivot our output away from rare words and toward common words and, to a limited
extent, toward words’ semantic locations in out-of-sample data.

Importantly, our setup appears to be difficult for a researcher to manipulate. Further adjustment

! Note that canonical correlation analysis in Lowe (2016) is what we refer to as correspondence analysis. CCA
here is a different matrix factorization, though it is very similar to a weighted correspondence analysis.



of the hyperparameters, within ranges that produce the desired ‘pivot’ behavior, have only limited
effects on the lowest dimensions of the results, though they can be changed to bring in more or less
smoothing from out-of-sample data.

We summarize our notation in Table [2 and the algorithm in Table (3| Step 3 in Table [3|is the
central component of the method, the CCA. Other steps either feed into step 3 or apply output from
it to the text documents we wish to analyze.

Note that the explanation for this method is somewhat involved, but the word score estimation
itself is essentially one big moving part. Each step in the setup is tied to another.

The out-of-sample word embeddings are the exception to this single moving part, however.
Pivot scores can be estimated without out-of-sample data and our application will produce almost
the same as in-sample data only output using this method, given the hyperparameters we choose.
We introduce the option here because it has the potential to be useful in cases where open-ended

survey responses are less abundant.

Overview of Canonical Correlation Analysis

Before introducing pivot analysis, we first describe the more general canonical correlation analysis
on which our method is based. Canonical correlation analysis uses a singular value decomposition
(SVD) on a covariance matrix between two sets of variables. The SVD is an orthogonal transfor-
mation of data that compresses variance into as few variables as possible. After applying SVD, it
is possible to truncate the output so that we are left with a small number of variables that still retain
a large amount of information from the original data. This is useful when we have a large number
of correlated variables from which we want to extract a small number of representative variables.
The SVD in a typical CCA is run on the covariance matrix between two sets of variables and
their inverted covariance matrices. Like in a linear regression, the inverted covariance matrices
adjust for different units across varying types of data. In its estimation, the SVD optimizes Pearson

correlations, or cosine similarity between centered matrices:
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In this formula, Cy, is the covariance matrix of X and Y, where X is one set of input variables

and Y is another input, while C,, is the covariance matrix for X alone and Cy, for Y alone. ¢, is
an eigenvector of C);Cl nyCy_leyx and ¢, is an eigenvector of Cy_leyxC;CIC , where ~! indicates an
inverted matrix.

¢, and ¢, project the X and Y matrices onto a shared latent space that is a good representation
of both data sets. These singular vectors are the coefficients from the model, like s from a linear
regression. Using a slightly simplied formula (Dhillon, Foster and Ungar, 2015), we multiply the
singular vectors by either the left, X, or right, Y, input to the CCA to obtain the variables’ locations
in the shared space:

frl)]. — (/‘szl/2 (PX (2)

Canonical correlation analysis is typically used when there are two types of data that reflect the
same underlying state, such as audio and video of an event or two translations of a speech. CCA
maximizes correlation between two sets of data to estimate the shared underlying, or latent, state
(e.g. the recorded event). In this alignment, attributes of one side of the data that do not appear
in the other, or that do not help maximize correlation with the other side, are thrown out in the
estimation of latent variables.

As an example of the use of CCA on text (and the primary inspiration for its use here), Dhillon
et al. (2015) use CCA to take advantage of both the left (before) and right (after) contexts of a
word in a sentence to train their embeddings to obtain two “views” of the data. This allows them to
use more nuanced context around a word in a sentence. They find that the linear method performs
as well as or better than existing non-linear methods for training word embeddings, the method

works particularly well for rare words, and that adding in extra contextual information can help
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disambiguate word meanings.

Overview of CCA in Pivot Analysis

Rather than use left and right contexts for words, we will scale our text based on in-sample word
co occurrences and weighted out of sample word embeddings. This maps word co-occurrences
and word counts to the same underlying space. The weights help us reduce the dimensionality of
our text summaries and they are the primary workhorse, while the addition of out-of-sample word
embeddings helps stabilize the output in small data sets.

For example, in our data, the word “government” is often accompanied by the words “inter-
vention”, “regulation”, and “interference”. We probably do not need to estimate that these words
have subtly different meanings and trying to do so would rely on very noisy data. But we do care
that a large cluster of people uses the word government, along with other words that reiterate its

broad meaning. Our method focuses on scaling the word government and drags its accompanying

words along with the scaling. Table [[|highlights this emphasis.

Standard text scaling Pivot analysis
government intervention | government intervention
government interference | government interference

government regulation government regulation

Table 1: Pivot analysis upweights common words relative to more rare words. It does this in a
way that allows us to simultaneously estimate semantic locations for common and rare words, as
well as bring in small amounts of data from out-of-sample sources. Its focus on common words
should help us distill more low-dimensional and representative summaries from the open-ended
survey data. If we consider variation in the rare words, they can account for a lot of variation in
the data when we add their variance together and this complicates the compression of word usage
onto a small number of dimensions.

The approach is similar to methods like the ridge regression (Hoerl and Kennard, 1970) and
Lasso (Tibshirani, 1996). These methods reduce over-fitting by shrinking coefficients in linear
regressions closer to 0, and perform well when there are a large number of correlated variables that

measure the same underlying information. The amount of shrinkage over the variables is closely
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related to their variance contribution in an orthogonal transformation of the data (Hastie, Tibshirani
and Friedman, 2001)). Variables that account for more variation in the data have coefficients that
are shrunk less than ones accounting for little variation.

In our CCA, we are shrinking how much rare words contribute to the text scaling, in addition
to a regularization like one in a ridge regression Beyond our specific interest in unsophisticated
speakers, this reduction matters because rare words can introduce noise to our compression —
similar to increasing R squared in a linear regression by introducing a large number of random
variables. Unlike Lasso and ridge, however, the CCA still assigns coefficients to all words without
shrinkage because it estimates two sets of coefficients: one set with shrinkage, which we use as a
keyword metric, and one set without, which we use to score documents.

Although we weight output toward common words, our specific setup for the CCA and the
structure of text data limit how much very common words contribute to our scaling, in a way similar
to tf-idf standardization["%] The CCA throws out data that does not maximize correlation between
two views of the data, especially after truncation, and there is an inverse relationship between
a word’s frequency and how exclusively a word occurs with other words. When co-occurrence
information is spread among a variety of words (i.e. it is not exclusive to a cluster), the CCA
struggles to maximize correlation between orthogonal co-occurrence vectors and frequencies.

To put this another way, we are able to find shared representations for the word government
across our two views of the data when we can drag its accompanying words along orthogonally.
There is enough uniqueness in the conditional word co-occurrence probabilities for the word gov-
ernment to separate those probabilities onto a polarized dimension that describes the variation in

our data set — and we can do this to the extent that we recreate the word frequencies of the word

12 This regularization only forces the CCA to behave like existing text scaling methods (i.e. PCA and related
approaches). The weighting is the key shrinkage in pivot analysis.

13 tf-idf is a commonly used standardization in text analysis. It is word frequency multipled by inverse document
frequency. Word frequency is often just the number of times a word appears in a document. Inverse document
frequency (IDF) (Sparck Jones|, [1972) quantifies how specific a word is in an entire corpus and it penalizes words that
appear in many documents.
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government with a unique and separable set of its co-occurrences. Other common words, such

as the word ‘time’, are associated with too many different words to place them on a unique top

dimension, so we do not pivot our low-dimensional scaling toward them.

Input
INPUT DATA
M | Term-document matrix (in-sample data)
W | Word embedding matrix (out-of-sample data)
k | Regularization scalar - for /2 norm
b | Tuning scalar - element-wise power, upweights common words
a | Tuning scalar - element-wise power, upweights word embeddings
I | Identity matrix
DERIVED DATA
G | Word co-occurrence matrix - M M
D, | Diagonal of G matrix
D;' One divided by elements of Dy - this will divide the rows or columns of a matrix by elements of D,
X | Row standardized word co-occurrence matrix - D;l G - left input of CCA - in-sample data
|~ 77777 7Y | Wordembedding matrix with weights - ¥ = DYW°? - right input of CCA - out-of-sample data |
b is a power for the vector D,
oa is an element-wise/Hadamard power for the matrix W
7777777777777777 o | 1&1d7ngiei7gein\alae?)fixrxi— ?oflfrc;glﬁaﬁzgtian7 I
P; | Column means of X - for evaluating tuning only
P; | Row means of X - for evaluating tuning only
¢ | The soft, scalar cutoff for the keywords - for evaluating tuning only
|~~~ 7 7 7 77 77777 (] Covariance matrix - Cy, is the covariance matrix of XandY ]
COEFFICIENT AND OUTPUT DATA
¢ | Singular vector - ¢ is a left singular vector and ¢, is a right singular vector
@7/ | Projection - ¢£™/ projection from X to shared space with ¥, ¢"*/ projection from ¥
¢!" | Word scores - projections/coefficients with correction
/%0 | Pivot scores - basis of keyword metrics using the Euclidean norm of the scores ||¢/"™/ |
M¢/™ | Document scores

Table 2: This is a reference table for the notation used below.

In our CCA, one side of the input will be our in-sample data, X, that is the word co-occurrence

matrix row divided by its diagonal:

X:D;G 3)

where G is the word co-occurrence matrix and Dgl is 1 divided by Gs diagonal. For clarity,

G = M "M, where M is the term document matrix. The term-document matrix M is a matrix with

rows for each document and columns for each word. The value in each element is the number of

times a word occurs in a specific document.
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1. Standardize word co-occurrences G with diagonal D,: X=D;'G; G=M"M

2. Weight out-of-sample data W by word counts: Y= DiZWO“
2b. (optional) Predict usage with knowledge embeddings: W = Wy CCA(Wyit, Wrwi) e 1

(recommended) Whiten embeddings

3. Run CCA between X and Y with regularization k: maxg,

3b. Induce pivots with b such that: Lo ||¢f il A =2b <ln (%) — c)

e +1
. P; 1
if In (#) < 0 then 0

e A +1

; b
max (’ 0 > o< In (I;’_ +1 ) — rectifier
777777777777777777777777777777777777777777777 poj T T
4. Correct for pivots ¢;" ="
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, e "+ _ 2
5. Apply projections to term-document matrix M: Moy n

Table 3: Summary of pivot analysis. Notation for this table is introduced in Table [2] Projections
are estimated using singular value decomposition. Larger bs induce the desired “pivot” behavior
(i.e. upweight common words) and larger (odd) a increases the effect of out-of-sample data (i.e.
upweight word embeddings). We standardize the final document scores based on the number of
words in a document.

This matrix is the starting point of our scaling. A principal component analysis of this matrix
would return results similar to previous methods. For example, DglG is closely related to the
factorized matrices in topic models (Roberts, Stewart and Tingley, [2016) and existing text scal-
ing methods, including LSA (Deerwester et al., |1990) and correspondence analysis (Lowe, 2007;
Bonica, 2014).

This particular matrix has worked well on sparse and heavily skewed data (Bond and Messing,
20135)). It is especially useful because it provides conditional word co-occurrence probabilities. In
our scaling, we want to optimize a prediction about what sets of words tend to go together and
these probabilities provide the necessary information for that optimization. These probabilities
also retain frequency information that we can use to pivot our output toward moderately common

to very common words that tend to appear within a limited set of arguments (i.e. a clustered set
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of accompanying words). Although it is possible to weight the chi-square statistic matrix used in
correspondence analysis, that matrix is not correlated with word counts in a way that can be used
for pivoting, since the co-occurrences and counts are explicitly decorrelated.

Prior to calculating the word co-occurrence matrix, we only remove words that appear in the
SMART stopword lis or that appear only once in the corpus. In this pre-processing, we rely on
defaults in the “stm” R package (Roberts, Stewart and Tingley, |2016)), the most commonly used
software for text analysis in political science. We do not stem the text, however, because our word
embedding data is not stemmed.

For our other input to the CCA, the out-of-sample data, we use a pre-trained word embedding
matrix provided online by Pennington et al. (Pennington, Socher and Manning, 2014)@ This
word embedding matrix is essentially output from text scaling run on a massive amount of data
from Wikipedia and/or Twitter. It contains the semantic location of a word in the entire English
language across 200 to 300 numeric columns in each row of the matrix. We will denote the word
embeddings using W. We use these embeddings because they are easy to access and are trained
on much more data than we have in the open-ended survey responses. The out-of-sample word
embeddings simply give us more data to work with as we estimate locations of words. At the same
time, our method is ultimately very closely tied to the in-sample data, so this added data mostly

smooths our final estimates (unless we tune its hyperparameter to very high levels)

http://jmlr.csail. mit.edu/papers/volume5/lewis04a/al 1-smart-stop-list/english.stop

15 We run an additional CCA between two versions of the GloVe embeddings, Twitter and Wikipedia, to remove
context specific idiosyncracies in the data sets. This steps whitens our input data.

16 Smoothing here means that we bring in very little information from the out-of-sample embeddings, but that we
can infer a relatively uncommon word’s meaning based on a combination of its location in the word embeddings and
its location relative to other words in our own corpus. Very high levels of our tuning parameters for this behavior will
bring the in-sample data closer to the out-of-sample data, as we will discuss later in this paper. The appropriate amount
of this tuning is currently subjective, however, so we leave evaluation of high levels of the tuning parameter to future
work. We will be able to provide an objective measure of its effect.
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Inducing Pivots

We require a few adjustments to the ordinary CCA and its input data to produce extremely low
dimensional behavior.

First, CCA is scale invariant, but we want it to respect the variance structure of our in-sample
word co-occurrences. Because of the inverted covariance matrix for X, Cy,, CCA does not penalize
the use of low variance dimensions when predicting word counts. To keep some or most of the
same structure, we add a regularization to Cy,, k, using multiples of the leading eigenvalue of that
matrix, o.

.
. 9 Cuyy "

00 \ /9T (Cortk0T) 651 /9y Cryy

Put simply, this keeps our output close existing scaling methods. It is perhaps helpful here to

think of X as the components of a principal component analysis. This regularization forces the
CCA to prefer the top dimensions of the principal components over lower dimensions. To fully
respect the variance structure of the original data, we can simply replace the inverted covariance
matrix with an identity matrix. In our data, the leading eigenvalue scales the pivots’ output to unit
vectors.

A smaller regularization than the identity matrix is sometimes useful because it identifies tightly
clustered phrases. In our case, this is useful because tightly clustered phrases suggest coordination
on a politician’s talking point. For example, clustered phrases in our data include “prefer single
payer” and “‘takes freedom away”

Next, the CCA does not weight common words more than rare ones when optimizing corre-
lations from our in-sample data to the word embeddings. Without this, we have no pivots (i.e.

no sparse, shared representations for common words across in-sample co-occurrences and out-of-

17 This behavior is not always desirable. For example, in social media platforms like Twitter, people can copy
each others’ language directly. With artificially low overlap between retweets and other related language (i.e. limited
semantic context), the distance between copied language and the rest of the corpus will be exaggerated.
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sample data). To add this behavior, we multiply the word embeddings by the word counts. We
also add an element-wise power (i.e. Hadamard power) to allow us to adjust the effect of the

out-of-sample data on our output:

Y = Dowe (5)

where b sets the weighting level and a, an odd integer, controls the amount of smoothing
inserted from out-of-sample data. a = 1 provides very little out-of-sample information and is the
only value for this parameter we will consider in depth here. To explain the role of out-of-sample
data more intuitively here, our weights wash out the effects of rare words and the tuning parameter
a adds information for moderately common/not too rare words back in based on the out-of-sample

word embeddings.

Tuning Pivots

The above formulas are sufficient to implement the CCA in pivot analysis. From here, we explain
how to tune the input parameters, as well as how to recover keywords and document scores from
the output.

Given the exponential, or inverse-rank frequency, distribution of word counts, we induce an
activation function for weighting common words when b > 0. To induce pivots, we set b to a level
high enough to scale only the common words. With a sufficiently large b, we hope to recover a
1 to 1 relationship between the two views of our data for only our common words and an overall
representation that has been reoriented toward common words. b that is not sufficiently large will
produce a sigmoid relationship for scores of common words’ between the two views of our data.

Simply raising b until the singular value decomposition can no longer be estimated works
in practice. It is potentially helpful to describe the activation function our weighting produces,

howeyver.
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The weighting and activation on a single dimension is a softplus function, with full activation
approximately In (%b + 1), where P, is the row mean of the symmetric matrix DglG and P; is
the column mean of Dg’lG (i.e. the input matrix X). Because of this, large b leads to a smooth
approximation to a rectifier, and words with In (%) < 0 have near 0 weight as pivots Whether

[}

a word is activated in a single dimension is then driven by:

Pj
In - >>0 (6)

As an example, the word “government” has a column mean in our data of 0.15 and a row mean
of 0.003. Roughly, this means that if a person says any random word, then the chance of them also
saying the word “government” is 15%. Similarly, if a person says “government”, their chance of
saying a given random word is 0.3%. When the ratio of these probabilities is large that word is a
pivot word.

Words that exceed this threshold have more polarized word scores if they tend to occur with a
highly specific set of terms on a dimension. Most often these highly specific, common words are
parts of very tightly clustered phrases, such as ‘universal access’ or ‘children stay on parents insur-
ance’. Words that exceed the threshold but are less specific can still be activated on a dimension to
a more limited extent if they are very common, especially given our regularization k.

At the same time, we observe that activation over all dimensions (in text data) is approximately

the logistic function for the Euclidean norm{r_g]

1

< o] 0

where A equals 2b <ln (%) — c) . ¢ 1s a feature of the data. In our data, ¢ is approximately 0.9

18 The pivot scores are related to the hyperbolic functions. Large b induces semantic dilation around common
words.

19 The word embeddings will affect this functional form over all dimensions, even though they do not affect word
scores in low dimensions. Having pivot scores equal to O for rare words is more important than the precise functional
form.
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and around 8% of words exceed that threshold@ The form of this logistic function in a given data
set is affected by the specific inverse relationship between term frequency and specificity, and the
function is not clearly logistic when the inverse relationship does not exist (e.g. in non text data
such as campaign contributions).

Close approximation to the above logistic function gives us the appropriate tuning for the pivot
analysis method. We show convergence to that functional form around the constant c in the ap-
pendix Figure [I0]

To provide somewhat more intuition for that tuning in words, our hyperparameters alter the
weighting function in the following ways. Raising the power of Dg in the word embedding matrix
multiplication D?WO“ produces steeper separation at ¢, while greater (odd) a will produce noisier
separation at ¢ — where “noise” is the added information from out-of-sample word embeddings@

Steeper separation at ¢ is a sharper separation between pivot words and the rest of the data.
Without this separation and a 1 to 1 relationship between pivot scores and overall scores, we no
longer have our keyword metric. Greater odd a allows us to add in some information for moderately
common words based on out-of-sample data. Very common words and very rare words are largely
unaffected by it, except when a is tuned to very high levels.

We visualize the effects of tuning b in Figure [10]in the appendix and visualize a to increase
the effects of word embeddings in Figure [[1} Tuning higher a smooths the pivot transition for
In (%) >> 0 and this can be visualized over all dimensions at a transition In (ﬁ> =c.

- P

1

Keywords and coefficient adjustment

Once we induce pivot behavior with large b, we will achieve high correlations between the two

sets of data — but only for common words. Because of this, the ¢/ "J scores provide the rescaled

word scores that we multiply by the term-document matrix to produce document scores, while the

20 ¢*s location affects high dimensions of the output, but has little effect on low dimensions.
21 Note that we will not achieve a balanced looking sigmoid function for extraordinarily skewed text data.
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f ") scores show pivot scores that anchored the overall representations and that we can use as a

keyword metric.

We multiply ¢} roJ by the corresponding canonical correlation (i.e. the corresponding eigen-
value) to place the pivot scores on the same scale as the overall word scores. ¢ "J and ¢§’ ") will
then be similar to equivalent for the pivot words, while relatively rare words in ¢£"*/ will remain
close to zero.

Before applying the word scores back to the documents, we adjust the overall word score
projections according to:

proj

e =" ®)
o™ |1

where [|¢{ roj || is the Euclidean norm of the pivot scores, and measures the degree to which a
word is a pivot word. The value is standardized so that the largest value is 1. This halves the size of
the word scores for pivot words only and corrects for the specific non-linearity that our weighting
produces. We visualize this adjustment in Figure |l|and Figure

To explain this more intuitively, our weighting lets us find dimensions based on common words,
but the weighting then scores common words too far away from the center once we’ve defined our
dimensions around them. This adjustment moves the common words back toward the center so
that we don’t score documents very strongly on one dimension if they simply use the words ‘health
care’. We require that the documents have repeated and consistent or highly specific word usage
to score highly on a dimension.

Our last step is to return document scores based on our word location estimates. To do this, we
simply multiply the projection, qb{ m, (i.e. the coefficients) by the original term document matrix

M, then adjust these document scores for the total number of words used in a documentEZI

22 We divide the scores by the number of words in a document to a power between 0.5 (more words add more
information at a rate of square root of n) and 1 (more words do not add more information). In our data, longer
responses typically use more complete sentences without adding many more substantive words. A value less than 1
accounts for the more grammatical responses. We use 0.75 and recommend this value in general. The choice has little
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Related Work

Both our common word estimation and domain adaptation is accomplished in a way similar to
structural correspondence learning (Blitzer, Foster and Kakade, 201 1). Blitzer et al. identify words
that are common and have the same usage in two contexts, and use these words as “pivots” to adapt
pre-trained data to a new corpus.

We also use pivots, but we only use word counts to identify keywords, rather than using su-
pervision on labeled data. This assumes that very common words are unlikely to be jargon. The
method also differs because it is very strongly tied to in-sample data and focuses on orienting the
representations toward word counts. The out-of-sample data almost exclusively smooths the final
estimates, and tuning the method to produce estimates closer to the out-of-sample data provides
only small predictive improvements.

Our focus on keywords means that we prioritize estimating locations for a small proportion
of words, rather than many rare words. Matrix factorization techniques used in computer science
tend to do the opposite of this. For example, word2vec (Mikolov et al., 2013), SVD with PPMI
standardization (Levy and Goldbergl [2014), and GloVe (Pennington, Socher and Manning, 2014))
discriminate between common and rare words to obtain precise estimates for a full vocabulary.
Otherwise, these models are closely related to pivot analysis.

Of course, orienting around common words probably ignores subtleties and idiosyncracies in
sophisticated text. However, this relative ignorance allows us, we hope, to produce interpretable
representations. Prior work has found a trade-off between predictive accuracy and interpretability
(Chang et al., 2009). Further, in our case, we should be able to achieve interpretable dimensions
without much loss in accuracy. Our outcome of interest is a single dimension of favorability toward

a public policy and most of the justifications on it are short and simple.

effect on the results, however.
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Application to Open-Ended Surveys on the ACA

We now apply our method to the data on the Affordable Care Act. We leave the hyperparameter a
at 1 so that the word embeddings, out-of-sample data, only provide a small amount of smoothing
to the estimates. We also leave the regularization k at 1, the leading eigenvalue of the in-sample
word co-occurrences, so that clusters of speech have somewhat greater weight.

Next, tuning b to 2 is sufficient to induce pivoting. As a reminder, the pivots are words that are
moderately to very common and that are also somewhat specific. We use them as axes on which to
pivot our output away from rare words and toward common words.

In inducing ‘pivots’, a sufficiently large » minimizes the effects of rare words to the point that

words with co-occurrence probabilities In (%) less than O receive little to no weight in our reori-
entation toward common words, as measured by the right singular vectors of our decomposition
(our pivot scores). The specific functional form of this tuning is a linear/symmetric relationship
between the left (overall scores) and right (pivot scores) singular vectors of our decomposition for
words with co-occurrence probabilities In (%) much larger than 0

Beyond orienting our scaling output toward common words, this tuning gives us keyword
scores that accurately reflect the polarization in words’ scores in our overall estimates. We visual-
ize the various adjustments to these hyperparameters in Figures and |12[in the appendix@

We first show the keywords from the top 2 dimensions of our output in Table[9] The keywords

here are a word’s ¢ "J on a dimension multiplied by its total activation (unit standardized || ¢}’

r0j H )
We named the dimensions ourselves.
These keywords appear to be highly informative. They pick up both specific components of

ACA policy and broad opinions on it.

23 In practice, it is fine to simply tune b with increasing positive integers until the matrix is computational singular,
then subtract one from the computationally singular b.

24 We also pre-process the word embeddings, step 2b in the Table E], using no regularization because using only
the Wikipedia embeddings prevents the Euclidean norm of the pivot scores from converging around ¢, as happens
using only in-sample data. This affects visualization of the Euclidean norm, but does not affect the low dimensional
representations.
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In Table [5] we show example responses that scored highly and uniquely on one of the top two

dimensions. Although not perfect, of course, these examples suggest that the method works well

on the document level, even though we do not incorporate document information into our CCA.

Keywords

Dimension 1

Dimension 2

“patient protection” “role of government” | “universal access” ‘“‘personal cost”
Pro Anti Pro Anti
preexisting government universal premiums
conditions unconstitutional health deductibles
parents run access money
children involved everyone working
stay us care pay
pre economy step even
young direction direction income

age peoples needs middle
opportunity business americans high
coverage much affordable medicare
helps control provide going
year dont right low
now medicine preexisting less
able president single fine
insurance end every taxes
can everything conditions elderly
uninsured taxes country higher
allows socialized provides everything
condition socialism issues doctors
still every system put

Table 4: Output summary. This table shows the keywords in the top two dimensions. We identify
keywords by multiplying ¢¢"*’ by its unit vector Euclidean norm. The dimensions and keyword
identification are unsupervised. We added the pro and con labels after linking the scores to the
preceding closed-ended survey response.
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Right - Role of Government - Dimension 1 (Anti)

because i think that the government has no business doing that. it should be left to private companies. a solution should be made so that the government doesn’t take it over.

its because the government is going to take over

i think was well conceived but poorly executed

too much control is given to the government

its not up the government to tell us what to buy, it think they should throw the whole thing in the garbage.

too much politics involved in what should be private

Left - Patient Protection - Dimension 1 (Pro)

the coordination and the ability for more people to get coverage and the rules

gives students the ability maintain insurance on parents coverage

coverage for those people who do not have insurance

this will hopefully help my children receive insurance and go to the doctor more frequently.

my daughter is able to get insurance that she was not able to get before for her and her family

21 year olds are now covered also

Right - Personal Cost - Dimension 2 (Anti)

isn’t going to benefit anybody and he doesn’t listen to the people

going to cost the middle class people a lot more money, which is not fair

friend got it to avoid fine & had to use it for gallbladder surgery & had a bill balance to pay over $6,000

some of the insurances are high for the middle class.

i think there are areas of patients that will be covered that they don’t do anything to earn it; they have no value in it, they should have a co-pay and do something to earn it-something that
they have to pay for coverage

how are we going to pay for it

Left - Universal Access - Dimension 2 (Pro)

something has to be done to improve our health care in america - it is not perfect but it is a start.

everyone should have access to healthcare.

because everybody deserves to have good health care and good treatments they deserve to get the right medicine and not the generic kind and because nobody deserves to struggle to keep
them self healthy

feels the government should not be a health care provider

i think they’re trying to get more health care for the underprivileged

it going to be good for everybody; we’re going to have better health insurance and better health care in general

Table 5: Examples of open-ended responses. This table shows a random sample of responses that score relatively highly (greater
than 1 standard deviation) on one of the top 2 dimensions and low (lower than 0.25 standard deviation) on the other. These are
responses that we score as relatively unambiguous. A total of 2,000 responses fit these criteria.



Dimension: 1

Y scores
(pivots/anchoring keywords)

X scores
(estimated word scores)

Figure 1: Relationship between pivot scores and overall scores. This figure shows the relationship
between the pivot scores and the overall scores on a single dimension (dimension 1). For large b,
all words receive overall scores (x axis) and only common words receive pivot scores (y axis).
This leads to a one to one relationship between common words’ pivot scores and overall scores.
We adjust this to a two to one relationship to correct for non-linearity — shown in Figure [/|in the
appendix.

Visualizing Pivot Scores

Because pivots are central to our method, we next visualize the distributions of pivot scores in our
data. These are illustrations of the equations we introduced in the methods section.

Figure (1] visualizes the relationships between pivot words and all words for the top two dimen-
sions of the output. The x axis is the word’s score and the y axis is the word’s pivot score. The
words with scores away from O on the y axis are keywords in the dimension, while scores away
from O on the x axis are accompanying words in a dimension. We described this output of the
method in the ‘keyword and coefficient adjustment’ section above.

In this figure, the red line has a slope of 1 after we multiply the keyword CCA projections by
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the canonical correlation. The purple line has a slope of 2 after we apply the adjustment W),,fi% =

Oy m). CCA maximizes the total weight along the red line, and we map the pivots to their word

scores based on the purple line. Achieving linear slopes here after tuning b to a high level gives us

the keyword scores that accurately reflect a word’s polarization in our final document scores.

Pivot scores Word scores, without adjustment All 200 Dimensions, WITH correct tion

eaiie

i

All 200 Dimensions, WITHOUT correction

nealth

care

0 1 0
Dim 1 Dim 1

Figure 2: Additional explanation of Figure [I| This figure shows how the pivot scores and the
overall word scores are related, along with the effect of the non-linearity adjustment on the overall
scores. It shows the same information as Figure [T} In the figures, the color red indicates a pivot
word without a linearity adjustment and purple shows the score with an adjustment. The left two
panels show the pivot scores (far left) and word scores (middle left). The x axis for both panels is
the score on dimension 1 and the y axis is the score on dimension 2. The pivot words have close
to the same coefficients in both views of the output. The far right panels show how the adjustment
proj
6" |l +1
and the y axis is In (%) We show this adjustment for the top two dimensions of the output in

Figures [7]and [§]in the appendix.

= ¢y ™ affects the Buclidean norm of the overall scores. The x axis is the Euclidean norm

The left two panels of Figure [2] also shows that the pivot words have the same scores in both
views (pivot and overall) of the data, and that the rest of the words appear in only the overall scaling
(i.e. they are oriented around common words). This shows the same linear relationship for pivots
and overall scores that we show in Figure[I] The two vertical panels on the right side of this figure
again show the effect of the linearity adjustment H(P{"f’#ﬂ = ¢x ™ on the word scores.

Figure @ shows the pivot scores for the 1st dimension, the 2nd dimension, and the Euclidean

norm on all dimensions. The Euclidean norm in the far right panel is standardized to a maximum
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- ) . .. P; .
of 1. The x axis in these panels is the pivot score and the y axis is In ( ?’) . For the Euclidean norm,
the function is logistic, while for the individual dimensions it is bounded by a softplus function.
On the x axis, a value close to one means that a word is a pivot word, while a value close to 0

means that a word is not a pivot.

1st Dimension 2nd Dimension All 200 Dimensions
1484134 health ; ; health w
care pépience ipRopiee care !
:/:\e Cég:r';k qgpvernment govgrgment hink - o
M@ﬁg,&w ‘‘‘‘‘ - it |

‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘‘

7.389"

0.368

Log mean probability of co-occurrence, In(P;/P;)

0.‘00 O.l25 0‘50 0.‘75 1.{)0
0 5 10 15 0.0 25 5.0 75 10.0 125 Euclidean norm (max 1): pivot scores
Pivot scores Pivot scores (before multiplying by corr)

Figure 3: Keyword weights. These figures show absolute values for pivot scores. The x axis is
a word’s total weight in a given number of dimensions (noted in the figure title) and the y axis is

In (%) . The x axis in the far right panel shows the values for ||¢"* ||. The softmax here is induced

by the structure of the data, and the exponent in the word count times word embedding portion of
the formula controls its form.

This figure shows the performance of the method that resembles tf-idf standardization. A word
that lags above and to the left of the final line is typically a common but ambiguous word. A person
who starts with that word can follow up in many different semantic directions. In the ACA data,

“health care” is a common but ambiguous starting point in an open ended survey response.

Predictive Evaluation

We evaluate the dimensions of the pivot analysis output by predicting responses to the closed ended
question in the surveys on favorability toward the Affordable Care Act. This is a straight forward

mapping to the closed-ended response. If the predictions are sufficiently low dimensional, we will

28



be able to visualize dimensions of attitudes toward the Affordable Care Actin a biplot@

In the evaluation, we predict the closed ended response on favorability toward the Affordable
Care Act using a Lasso (Tibshirani, [1996). This is a penalized regression that selects the best
independent predictors of ACA attitudes from our text dimensions@ To compare the coefficients,
we first scale each dimension so that each variable in the regression has the same variance. The
coefficients from this model are then the additive dimensions of attitudes toward the Affordable
Care Act, and the size of the coefficient reflects a dimension’s importance in prediction.

To help visualize these results, we run k means clustering on the representations — with the
dimensions weighted by their Lasso coefficient. If we are not able to visualize the dimensions in
two dimensions, then colors from the k means clustering will appear randomly distributed in the
biplot.

Figure {| shows the biplot for the top two dimensions of word scores from our method. It shows
the unadjusted scores for all words (¢ roJ ) so that common words remain easy to see, since the
adjustment brings common words closer to the center. The x axis is the first dimension of the
scores and the y axis is the second dimension. The size of the words is the number of occurrences
in the data set. To orient the reader, an individual who says “government” in the responses usually
does not like the government.

The figure shows clear separation in colors based on the prediction weighted clustering, mean-
ing that we can adequately visualize dimensions of ACA attitudes in only two dimensions. Higher

dimensions do not substantively affect the clusters.

25 The prediction based approach allows us to get around complicated survey based evaluations of our scores. In
evaluations that test whether people are able to group words in the same way as a model, for example, we would likely
perform better if we estimate a high number of dimensions on which clusters of words are tightly packed. These tightly
packed clusters would be easy for non-experts to associate. However, the large number of clusters would no longer
be in line with our goal of producing latent and low dimensional representations of attitudes. The low dimensional
representations should link loosely associated arguments.

26 Our Lasso uses the defaults in the ‘glmnet’ package (Friedman, Hastie and Tibshirani, 2010). The glmnet Lasso
function selects the regularization level using smallest cross-validated error.
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Figure 4: Word scores. This panel shows the word scores for the first two dimensions. We show
text for words with frequency greater than 50 and points for words stated 5 to 50 times. Note that
the final word scores have an adjustment that moves the pivot words closer to 0 (see Figures [[]and
[8). This adjustment moves the pivot words close to the inner edge of their associated word clusters
and corrects for non-linearity in the pivot scores.

Comparisons to other continuous methods

In Figure [5] we compare the Lasso on our data to other methods. In the comparison in the left

panel, we again rescaled the word scores from each method to equal variance vectors and then

estimated the Lasso 100 times for each method. We trained the Lassos on a training set (4/5 of the

data) and evaluated the predictions on a test set (1/5 of the data). The test and training set were the
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same for all methods and iterations 2]

For all but GloVe and the topic models, the x axis denotes a regression on the first n dimensions
of a method’s output. For GloVe and the topic models, we asked the method to return the number
of dimensions then predicted using that output. The topic model results are shown at the number
of topics minus 1. We show the area under the ROC curve for the first 10 regression models from

each method.

o
N -
a (=} : "
c — Pivot Analysis
QL5
':;E) K= — GloVe
T 0
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g 8 3 S LSA
5w o E PCA
o g n L
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2 4 6 8 10 5 10 15 20
Number of dimensions in model Nth dimensions in 100 dimension model

Figure 5: Dimensionality of other methods. The left panel of this table shows area under the ROC
curve for 100 penalized regressions predicting ACA favorability from each method’s output. It
shows that pivot analysis achieves high AUC in low dimensions, while other methods converge
to high accuracy more slowly. The right panel shows the absolute value of coefficients from a
100 dimensional penalized regression predicting ACA favorability from each method’s output.
Predictive dimensions are concentrated in the first dimensions of pivot analysis, while predictive
dimensions are spread across the output from other methods. The dimensionality for topic models
here is the number of topics minus 1.

Figure [5| shows that the Lasso is using substantially lower dimensional information in pivot

analysis than in all other comparison methods. Pivot analysis is capable of condensing much of the

27 The comparisons for ‘LSA’ and ‘PCA’ are close matches to methods used in political science, such as Wordfish
and correspondence analysis (Lowel [2016). These methods happen to perform worse on our data than their typical per-
formance, however, possibly due to some common words appearing with no other words. This lack in co-occurrences
is washed out in our method, but is picked up as important variation in these other methods.
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information in the text responses into a small number of variables. Given this low dimensionality,
a researcher will not need to select one out of many possible variables for later analyses.

In the right panel, we show the absolute value of coefficients from a 100 dimensional Lasso
predicting ACA favorability in our data. This shows that a Lasso chooses the first dimensions of
pivot analysis’s output, but chooses higher dimensions from other methods. A researcher that uses
theses methods would need to justify their high dimensional choice in later analyses, while pivot
analysis provides a hands off and useful ordering.

This substantial improvement in performance in low dimensions comes with very small cost.
Pivot analysis performs only marginally worse than PCA and PPMI in 200 dimensions (pivot AUC:
0.914; PCA AUC: 0.916; PPMI AUC: 0.919).

Comparison to topic models

Topic models can recover similar dimensions, but perform worse on both low and high dimensional
prediction in our data.

As shown in Figure[5] selecting the number of topics in a correlated topic model between 4 and
20 will all return dimensions that predict ACA attitudes at the same levels, and at lower predictive
accuracy than the first 2 of our dimensions. Selecting the number of topics automatically using
information criteria will give around 50 topics.

We show similar dimensions from a correlated topic model in Table [6 where we have run
several models and chosen 4 topics so that the results look somewhat like our output

Of particular interest to our model, the table shows that pivot scores’ keywords may be closer to
the frequency and exclusivity metric (FREX) for keywords in a topic model (Bischof and Airoldi,
2012)) than the highest probability metric for keywords. Since pivot analysis optimizes the keyword

metric (])yp "] this table suggests that pivot analysis orients dimensions based on a combination of

28 One option for using our method would be to first estimate the pivoted representations, then choose a number
of topics that resembles that output. Explicitly linking topic models and discretization to our approach is beyond the
scope of this paper, however.
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Keywords (highest probability) - TOPIC MODEL Keywords (FREX) - TOPIC MODEL

Topic 1 Topic 2 Topic 3 Topic 4 Topic 1 Topic 2 Topic 3 Topic 4
“health insurance / cost” “government / cost” “benefit / cost” “health care” “health insurance / cost” “government / cost” “benefit / cost” “health care”
No relationship Anti Anti Pro No relationship Anti Anti Pro
people government think health afford government small care
insurance going healthcare care coverage going fair everyone
get cost work will now much hard needs
afford like country everyone many money went available
can much something need conditions things nation sure
coverage money system help without take basically elderly
now just ) lot preexisting medicare rich chance
pay us know good covered anything living basic
many right expensive believe high control major heath
law want buy everybody uninsured away real accessible
medical way business needs insured run healthcare harder
companies costs getting affordable class nothing hours answer
conditions one doctor make cover taxes drug effort
without things dont reform children taking started need
preexisting doctors free able middle choice work fortunate
premiums take needed better stay long self hoping
access medicare benefits americans parents step benefits improvement
covered anything keep bill existing single reach provide
really pay making time age else seems ensure
paying well made get allows payer supposed senior

Table 6: Keyword metrics from 4 topic correlated topic model. This table suggests that our pivots
resemble the frequency and exclusivity metric for keywords in topic models.

frequency and exclusivity.

Effects of Out-of-Sample Word Embeddings

This paper focuses on scaling text using very little out-of-sample data. It is possible to use more
out-of-sample data, however, and tuning a to increase the effects of the out-of-sample word em-
beddings has small effects on our results.

For example, with a = 3 and all other parameters the same, we find that the top 2 dimensions
better fit our category labels (Table [9)in the appendix). This suggests that the out-of-sample word
embeddings make the results more general — that is, less specific to the Affordable Care Act. On
the other hand, tuning the hyperparameter a to higher levels without also increasing b reduces our
ability to predict stances on the Affordable Care Act. The dimensions begin to be too general to be
useful.

In smaller data sets on political opinions, such as abortion, we have observed larger increases

in low dimensional predictive accuracy when using higher a values.
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Correlates with Other Survey Responses

In addition to the open-ended survey responses collected by the Kaiser Family Foundation and
Pew Research Center between 2009 and 2016, we also have a smaller collection of responses to
the same question in our own surveys. This survey has a larger variety of closed-ended responses
and has these responses going back several years.

We applied the word representations to our nationally representative sample to see whether the
top dimensions were correlated with vote choice and change in ACA attitude after controlling for
partisanship. Partisanship is by far the best predictor of both vote choice and ACA attitudes — prior
to the 2016 election, it was correlated with ACA attitudes at about 0.65. Finding that a variable is
significantly correlated with a political outcome after including partisanship as a control is a high
standard.

Table [/| shows that the top two dimensions of our output are correlated with 2016 vote choice,
controlling for 2016 partisanship (model 2). The 2nd dimension but not the first is also associated
with whether a Republican voted for Donald Trump instead of Republican establishment candi-
dates (3). This suggests that pivot analysis picks up political cleavages both across and within
American political parties.

The 2nd dimension is further associated with changes in ACA attitudes from 2012 to 2016 (1).
People who talked about personal costs, rather than universal access, were more opposed to the law.
This is an important change because major components of the ACA were only implemented after
2012. Text dimensions that were correlated with 2016 but not 2012 attitudes were more likely to be
due to personal experiences with the law, or due to copying politicians’ new, post implementation
talking points.

In these models, we include as controls: education, income, partisanship in 2012 (1 only),
partisanship in 2016 (2 and 3 only), Barack Obama feeling thermometer, gender, age and age
squared, race/ethnicity. The figures above the table show the distribution of the document scores

in our nationally representative panel survey of around 1 thousand people, training on all text
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responses.

Of these variables, only a relative dislike of Barack Obama (not high feeling thermometer)
and race/ethnicity (white) were associated with whether a Democratic respondent voted for Bernie
Sanders instead of Hillary Clinton. Higher dimensions of the text responses were also unrelated to

the Democratic primary votes.

Dim 1: Dim 2:
distribution in panel survey distribution in panel survey

< S

P <)
2 - 2 7
FZIN a2 o
g S 7 § o
) _ a) _

o _| _ - o | __

S T T T T T T S T T T T

-4 -2 0 2 4 6 -4 -2 0 2 4
Standard deviations (centered) Standard deviations (centered)

Dependent variable:

ACA attitude: positive ACA 2016 vs Donald Trump vs Donald Trump vs

is more opposed ACA 2012 Hillary Clinton Republican establishment
@ (@) (€)

Dim 1 —0.05 0.05*** —0.01

(+ role of government vs  t=—0.81 t=4.33 t=-0.33

— patient protection)

Dim 2 0.15* 0.05*** 0.14***

(4 personal cost vs t=242 t=4.64 t=3.49

— universal access)

Observations 768 890 387

R’ 0.08 0.65 0.09

Note: *p<0.05; **p<0.01; **p<0.001

Table 7: Between and within party correlates in small panel survey. All independent variables are
scaled so that a unit change correspondents to a one standard deviation change in the panel corpus.
The dependent variables in the vote choice models are coded 1 if the respondent voted for the
first candidate (Donald Trump) and coded -1 if the respondent voted for the second candidate(s).
Republican “establishment” candidates are: Jeb Bush, Chris Christie, John Kasich, and Marco
Rubio.
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ACA Attitudes Over Time

In Figure [6] we show changes in the mean of each of the top two dimensions over time based
on the Kaiser Family Foundation and Pew Research data 2009 through ZOISF_gI We plot separate
time series for respondents who selected favorable or unfavorable in the preceding closed-ended
response. The error bars are bootstrapped 95% confidence intervals.

These changes over time align with 1) the ACA being signed into law in 2010 and 2) the
implementation of major components of the law. In the top left panel, for example, we see that
respondents who felt favorably about the law had not yet started to discuss specific policies, in-
cluding changes benefiting people with pre-existing conditions and allowing young people to stay
on their parents’ health insurance.

In the bottom right panel, there is a small uptick in discussion of personal costs in late 2013
that continues into 2015. The coarse dotted line is the average of unfavorable responses for 2009
through early 2013. This late 2013 change corresponds to announcements on changes to indi-
viduals’ health insurance policies, including changes in out-of-pocket costs. For example, in late
October to November 2013, many Americans received notices that their insurance plans would no
longer be offered and that they would need to purchase new plans@ This shift was accompanied
by a small increase in unfavorable attitudes toward the ACA in the Kaiser Health Tracking Poll

The increase in discussion of personal cost by people unfavorable to the law comes at the same
time as a decrease in the more abstract role of government response (top right panel). This de-
cline in role of government responses continues a long slow decline since 2009 among individuals
unfavorable to the law. Overall, the decline suggests that attitudes toward the ACA became more
concrete over time and with the law’s actual implementation. This pattern raises the prospect that

abstract rhetoric by Republicans in Congress — focusing on repeal of the ACA — had less traction

20ur data in 2016 comes from the surveys of activists.

3Ohttps://www.washingtonpost.com/news/wonk/wp/2013/10/29/this-is-why-obamacare-is-cancelling-some-
peoples-insurance-plans/

3 http://www.kff.org/interactive/kaiser-health-tracking-poll-the-publics-views-on-the-aca/
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Figure 6: Changes in ACA justifications over time. This figure shows the 2009 through 2015 means
of the Ist and 2nd dimensions of our text scaling separated by respondents who felt favorably or
unfavorably about the ACA. The error bars are 95% confidence intervals based on bootstrapped
standard errors. This data is subset to include only respondents in the Kaiser Family Foundation
and Pew Research surveys and excludes our nationally representative sample in 2016, along with
the surveys of activists in 2016.

with the public after the ACA’s implementation.

An implication of this analysis, then, is that the decreased focus on the role of government
among the public could have contributed to the Republicans’ initial failure to repeal the ACA. For
the ACA, this policy feedback (Campbell,[2012) may have had a specific form; one that mostly af-
fects within party politics. Republicans were unified in their dislike for the ACA, but disagreed on

what should be done to change it. This disagreement increased in severity after the ACA’s imple-

mentation, as abstract role of government concerns became less dominant and concrete concerns
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about personal costs increased.

During debate over policy proposals to repeal and replace the ACA, commentators highlighted
divides between moderate and conservative Republicans. Here, we go further to identify divisions
in public opinion that did not map cleanly onto a single dimension of political conflict, implying
that the Republican division was more complex than competing degrees of conservatism would
have been. Instead, the moderate to conservative spectrum on the right was composed of ultimately
competing preferences about personal costs and the role of government. After implementation but

not before, Republicans either satisfied both of these criticisms or split their party on these lines.

Discussion

Pivot analysis provides ordered and interpretable representations of short text data, along with
keywords to help evaluate results. Its output substantially outperforms existing techniques on low-
dimensional predictions. The top dimensions from pivot analysis further correspond to intuitive
explanations for individuals’ changing justifications for supporting or opposing the Affordable
Care Act — pre and post implementation of the law— as well as known political cleavages within
and across American political parties. Adding information from word embeddings pre-trained on
general text makes the representations more general, but relying too much on that information
comes at the expense of domain-specific meanings.

The agreement on the topic in an open-ended survey thus seems to allow respondents to repeat
a small set of vocabulary in meaningful patterns. Our departure from prior work is due to our
specific interest in representing short and focused texts in an interpretable way. This method, then,
will not be well-suited to all texts and purposes. In particular, latent Dirichlet allocation (Ble1, Ng
and Jordan, 2003)) and correlated topic models (Ble1 and Lafferty, 2007} Roberts et al., 2014) will
likely outperform this method when text is particularly diverse, and for which very common words

will not necessarily be useful starting points for scaling the text.
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Existing unsupervised methods for long form political text (Slapin and Proksch, [2008) may
also outperform this method when there is a large variety of word usage by sophisticated speakers,
as these provide confidence intervals for individuals. Other methods in political science, such as
semi-supervised methods that use hand labels (Benoit et al., 2016), methods that include other
indicators of political preferences (Kim, Londregan and Ratkovic, 2016)), and supervised methods
(Laver, Benoit and Garry, 2003} |Lowel, 2007; Beauchamp), 2012}, will also be well-suited for tasks

like measuring ideology in legislatures.
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Appendix
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Figure 7: Word scores, adjusted. The top 3 panels show the adjust coefficients, while the bottom
3 panels show unadjusted coefficients.
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Word scores, with adjustment
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Figure 10: Tuning b to induce pivots. We use the b value in the bottom left panel.
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Figure 12: Tuning k to remove CCA scale invariance. We use the k value in the middle panel.
This figure shows the Euclidean norm on only the first 10 dimensions. These function approxi-
mate the logistic function in red in high dimensions. For some values of the hyperparameters, the
very common words will not converge to the logistic curve, and the function will resemble tf-idf
standardization.
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Topic 1.
disributon n all 10K

Topic 2 Topic 3 Topic 4
disribution n all 10k disribution n ll 10K disribution n all 10K

Keywords (highest probability) - TOPIC MODEL

Topic 1 Topic 2 Topic 3 Topic 4
“health insurance / cost” “government / cost” “benefit / cost” “health care”
No relationship Anti Anti Pro
people government think health
insurance going healthcare care
get cost work will
afford like country everyone
can much something need
coverage money system help
now Jjust go lot
pay us know good
many right expensive believe
law want buy everybody
medical way business needs
companies costs getting affordable
conditions one doctor make
without things dont reform
preexisting doctors free able
premiums take needed better
access medicare benefits americans
covered anything keep bill
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Table 8:

Nth dimension of topic model

Topic model summary (4 topics).
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Area under curve

(predictions)

0.6

0.5

Keywords (FREX) - TOPIC MODEL

Topic 1 Topic 2 Topic 3 Topic 4
“health insurance / cost” “government / cost” “benefit / cost” “health care”
No relationship Anti Anti Pro
afford government small care
coverage going fair everyone
now much hard needs
many money went available
conditions things nation sure
without take basically elderly
preexisting medicare rich chance
covered anything living basic
high control major heath
uninsured away real accessible
insured run healthcare harder
class nothing hours answer
cover taxes drug effort
children taking started need
middle choice work fortunate
stay long self hoping
parents step benefits improvement
existing single reach provide
age else seems ensure
allows payer supposed senior

Pivot Analysis
GloVe
LSA
PPMI
PCA
CTM/STM

Figure 13: Dimensionality of other methods (all 100 dimensions).
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Keywords

Dimension 1

Dimension 2

“patient protection”  “role of government” | “universal access”  “personal cost”
Pro Anti Pro Anti
preexisting direction universal premiums

conditions run care tax
children government access deductibles
age socialized health money
fine every direction pay
parents much step high
able business provide middle
can dont single deductible
afford small everyone fined
benefit senior americans rates
insurance congress affordable low
coverage us needs much
now federal right income
without involved old lied
people control available doctor
covered everything national bills
companies medicine every also
get done system keep
stay choice country dollars
helps general important doctors

Table 9:  Output summary (with word embeddings). Including more information from word em-

beddings makes the representations slightly less domain-specific.
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